

Acier de construction HRC TÔLE QUARTO

ACIER DE CONSTRUCTION

Les aciers de construction sont des aciers au carbone et au manganèse présentant un niveau minimal garanti de résistance (limite d'élasticité et résistance à la traction) et une ductilité satisfaisante.

APPLICATIONS

Les aciers de construction peuvent être utilisés dans la plupart des secteurs de l'industrie du bâtiment et de la construction mécanique tels que les éléments de construction. les conteneurs. les réservoirs et les profils.

CONDITIONS DE LIVRAISON

- · Grades:
 - Selon: EN 10025-2 ASTM A36/A36M ASTM A283/A283M ASTM A572/A572M
- État de livraison :
 - «+AR» sans conditions particulières de laminage et/ou de traitement thermique
 - «+N» avec traitement de normalisation
- Les produits peuvent être livrés type 3.1. 2.2 . 2.2cc ou conformément à la norme EN 10204

OPTIONS

Les informations suivantes doivent être spécifiées au moment de la commande :

- Quantité à livrer.
- Désignation du produit. dimensions nominales. normes de référence (conditions techniques de livraison et tolérances sur les dimensions et la forme) et/ou toute autre exigence spécifique du client.
- Type de certificat de contrôle
- Toute exigence additionnelle en matière de contrôles. d'essais et de documents de contrôle.
- Besoin de test de flexion par choc « Charpy » pour les grades en qualité JR. grade A36 et grades A283
- Délivrance d'un marquage CE. marquage NM
- Toutes options spécifiques au client relatives aux normes EN 10025-2 & ASTM A36/A36M & ASTM A283/A283M & ASTM A572/A572M.
- Si le client ne donne aucune indication quant à l'exécution de l'une de ces options issues de la norme EN 10025-2. MAGHREB STEEL livre ses produits selon les spécifications de base.

Acier de construction HRC TÔLE QUARTO

Composition chimique EN10025-2

Grade					%max				
Grade		С		Si	Mn	Р	S	N	Cu
	<16	16 <ep<40< th=""><th>>40</th><th>31</th><th>IVIII</th><th></th><th>3</th><th>IN</th><th>Cu</th></ep<40<>	>40	31	IVIII		3	IN	Cu
	0.17	0.17	0.20	-	1.4	0.035	0.035	0.012	0.55
S235JR	0.17	0.17	0.17	-	1.4	0.030	0.030	0.012	0.55
	0.17	0.17	0.17	-	1.4	0.025	0.025	-	0.55
	0.21	0.21	0.22	-	1.5	0.035	0.035	0.012	0.55
S275JR	0.18	0.18	0.18	-	1.5	0.030	0.030	0.012	0.55
	0.18	0.18	0.18	-	1.5	0.025	0.025	-	0.55
	0.24	0.24	0.24	0.55	1.6	0.035	0.035	0.012	0.55
S355JR	0.20	0.20	0.22	0.55	1.6	0.030	0.030	0.012	0.55
	0.20	0.20	0.22	0.55	1.6	0.025	0.025	-	0.55

Composition chimique ASTM A36/A36M

Grade	Tolérance	Epaisseurs -			% I	Max		
Grade	Tolerance	Lpaisseurs	С	Si	Mn	Р	S	Cu
	min	-	0.25	-	-	-	-	-
	max	20	-	0.4	-	0.04	0.05	0.2*
	min	20.1	0.25	-	0.8	-	-	-
A36	max	40	-	0.4	1.2	0.04	0.05	0.2*
A36	min	40.1	0.26	-	0.8	-	-	-
	max	65	-	0.4	1.2	0.04	0.05	0.2*
	min	65.1	0.27	-	0.85	-	-	-
	max	100	-	0.4	1.2	0.04	0.05	0.2*

^{*} Si spécifié à la commande

Composition chimique ASTM A283/A283M

Cradas	Talávanas	Empionous			% [Max		
Grades	Tolérance	Epaisseurs	С	Si	Mn	Р	S	Cu
	min	-	-	-	-	-	-	-
4303C×4	max	40	0.14	0.4	0.9	0.035	0.04	0.2*
A283GrA	min	40.1	-	0.15	-	-	-	-
	max	-	0.14	0.4	0.9	0.035	0.04	0.2*
	min	-	-	-	-	-	-	-
A283GrB	max	40	0.17	0.4	0.9	0.035	0.04	0.2*
AZOSGIB	min	40.1		0.15	-	-	-	-
	max	-	0.17	0.4	0.9	0.035	0.04	0.2*
	min	-	-	-	-	-	-	-
V303C*C	max	40	0.24	0.4	0.9	0.035	0.04	0.2*
A283GrC	min	40.1	-	0.15	-	-	-	-
	max	-	0.24	0.4	0.9	0.035	0.04	0.2*
	min	-	-	-	-	-	-	-
4303CrD	max	40	0.27	0.4	0.9	0.035	0.04	0.2*
A283GrD	min	40.1	-	0.15	-	-	-	-
	max	-	0.27	0.4	0.9	0.035	0.04	0.2*

Acier de construction HRC TÔLE QUARTO

Composition chimique ASTM A572/A572M

Grades	Tolérance			% Max		
Grades	Tolerance	С	Si	Mn	Р	S
A572Gr42	min	-	-	-	-	-
A3/20142	max	0.21	0.40	1.35	0.04	0.05
4572Cr50	min	-	-	-	-	-
A572Gr50	max	0.23	0.40	1.35	0.04	0.05
A572Gr55	min	-	-	-	-	-
A3/2G133	max	0.25	0.40	1.35	0.04	0.05
∆ ⊑72 <i>C≈</i> 60	min	-	-	-	-	-
A572Gr60	max	0.26	0.40	1.35	0.04	0.05
A572Gr65	min	-	-	-	-	-
	max	0.23	0.40	1.65	0.04	0.05

CARACTÉRISTIQUES MÉCANIQUES / EN 10025-2

	Limit		sticité m Rp	inimale		nce à la on Rm		Д	.80% mi	n		A5	5.65% m	in
Grade		(N/	/mm²)		(N/n	nm²)								
Graue		16	40	63				1	1.5	2	2.5	3	40	63
	≤16	<e≤< td=""><td><e td="" ≤<=""><td><e td="" ≤<=""><td><3</td><td>3 ≤ e ≤100</td><td>≤1</td><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e></td></e></td></e≤<>	<e td="" ≤<=""><td><e td="" ≤<=""><td><3</td><td>3 ≤ e ≤100</td><td>≤1</td><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e></td></e>	<e td="" ≤<=""><td><3</td><td>3 ≤ e ≤100</td><td>≤1</td><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e>	<3	3 ≤ e ≤100	≤1	<e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<>	<e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<>	<e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<>	<e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<>	≤e≤	<e≤< td=""><td><e≤< td=""></e≤<></td></e≤<>	<e≤< td=""></e≤<>
		40	63	80				1.5	2	2.5	3	40	63	100
S235JR														
S235J0	235	225	215	215	360 - 510	360 - 510	15	16	17	18	19	24	23	22
S235J2														
S275JR														
S275J0	275	265	255	245	430 - 580	410 - 560	13	14	15	16	17	21	20	19
S275J2														
S355JR														
S355J0	355	5 345	335	325	510 -	470 -	12	13	14	15	16	20	19	18
S355J2		5 345			680	630							-	

Acier de construction HRC TÔLE QUARTO

CARACTÉRISTIQUES MÉCANIQUES / ASTM A36/A36M

Grade	Epaisseurs	Rp	Rm	A%
A36	5 <ep≤60< th=""><th>≤ 250</th><th>400-550</th><th>≥20</th></ep≤60<>	≤ 250	400-550	≥ 20

CARACTÉRISTIQUES MÉCANIQUES / ASTM A283/A283M

Grades	Tolérance	Rp	Rm	A% 200mm	A% 50mm
A283GrA	min	165	310	27	30
AZOSGIA	max	-	415	-	-
A283GrB	min	185	345	25	28
AZ83GIB	max	-	450	-	-
A283GrC	min	205	380	22	25
AZOSGIC	max	-	515	-	-
A283GrD	min	230	415	20	23
	max	-	550	-	-

CARACTÉRISTIQUES MÉCANIQUES / ASTM A572 / A572 M

Grades	Tolérance	Rp	Rm	A% 200mm	A% 50mm
A572Gr42	min	290	415	20	24
A5/2G142	max	-	-	-	-
4F72C*F0	min	345	450	18	21
A572Gr50	max	-	-	-	-
4572C*55	min	380	485	17	20
A572Gr55	max	-	-	-	-
A572Gr60	min	415	520	16	18
A372G160	max	-	-	-	-
AE73C *6E	min	450	550	15	17
A572Gr65	max	-	-	-	-

Acier de construction TÔLE QUARTO

Cartographie dimensionnelle

5N 40035 3	Lorgours								ı	Epais	seurs	6							
EN 10025-2	Largeurs	5	6	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
	1500																		
S235 JR/J0/J2 + AR	2000																		
	2500																		
	1500																		
S275 JR/J0/J2 + AR	2000																		
	2500																		
S355	1500																		
JR/J0/J2/K2 + AR	2000																		
	2500																		
	1500																		
S235 JR/J0/J2 + N	2000																		
	2500																		
	1500																		
S275 JR/J0/J2 + N	2000																		
+ N	2500																		
S355	1500																		
S355 JR/J0/J2/K2 + N	2000																		
	2500																		

ASTM A36	Lauranna									Epais	seurs	6							
ASTIM A36	Largeurs	5	6	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
A36	1500																		
	2000																		
	2500																		

Acier de construction TÔLE QUARTO

Cartographie dimensionnelle

ACTA4 A202	Largeurs									Epais	seurs								
ASTM A283	za. Bears	5	6	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
	1500																		
A283 GrB	2000																		
	2500																		
	1500																		
A283 GrB	2000																		
	2500																		
	1500																		
A283 GrC	2000																		
AZ63 GIC	2500																		
A283 GrD	1500																		
	2000																		
	2500																		

ASTM A572	Largours								l	Epais	seurs	5							
ASTIVI ASTZ	Largeurs	5	6	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
	1500																		
A572Gr42	2000																		
	2500																		
	1500																		
A572Gr50	2000																		
	2500																		
	1500																		
A572Gr55	2000																		
	2500																		
	1500																		
A572Gr60	2000																		
	2500																		
	1500																		
A572Gr65	2000																		
31 - 31 33	2500																		

A VALIDER A LA COMMANDE

Acier de construction HRC

Cartographie dimensionnelle

25-2	S	235JR +A		2			5JR/J +AR			S35	5JR/J +AR	0/J2		S23	5JR/J +N	0/J2		S27	5JR/J +N	0/J2		S35	5R/J0 +N)/J2
EN 10025-2		1000	1250	1500		1000	1250	1500		1000	1250	1500		1000	1250	1500		1000	1250	1500		1000	1250	1500
	1.5																							
	1.6																							
	1.7																							
	1.8																							
	1.9																							
	2																							
	2.5																							
	3																							
	3.5																							
	4																							
	4.5																							
	5																							
	5.5																							
	6																							
	6.5																							
ည	7				ည				ည				S				δ				હ			
Epaisseurs	7.5				Epaisseurs				Epaisseurs				Epaisseurs				Epaisseurs				Epaisseurs			
aiss	8				aiss				aiss				aiss				aiss				aiss			
Ер	8.5				ם				굡				Бр				Б				Ер			
	9																							
	9.5																							
	10																							
	11																							
	12																							
	13																							
	14																							
	15																							
	16																							
	17																							
	18																							
	19																							
	20																							
	21																							
	22																							

Acier pour appareils à pression HRC TÔLE QUARTO

ACIERS POUR APPAREILS À PRESSION

Les aciers pour appareils à pression se distinguent des aciers de construction au carbone et au manganèse par leur importante résistance à la pression à toutes les températures (ambiante. basse ou élevée).

Ils présentent une bonne aptitude au soudage et une haute résilience.

APPLICATIONS

Ces aciers sont adaptés au formage mécanique et au soudage.

Ils conviennent au recuit normalisant ou au recuit de détente qui neutralisent le durcissement consécutif au soudage.

Ils s'utilisent essentiellement pour la fabrication de chaudières. de tuberie à pression ou à vapeur. d'appareils thermiques et de récupérateurs de chaleur.

CONDITIONS DE LIVRAISON

Grades

- selon: EN 10028-2 - ASTM A516/A516M

• État de livraison :

«+AR» sans conditions particulières de laminage et/ou de traitement thermique

«+N» avec traitement de normalisation

Les produits peuvent être livrés type 3.1. 2.2. 2.2cc ou conformément à la norme EN 10204

OPTIONS

Les informations suivantes doivent être spécifiées au moment de la commande :

- Quantité à livrer.
- Désignation du produit, dimensions nominales, normes de référence (conditions techniques de livraison et tolérances sur les dimensions et la forme) et/ou toute autre exigence spécifique du client.
- Toute exigence additionnelle en matière de contrôles, d'essais et de documents de contrôle.
- Besoin de test de flexion par choc « Charpy » pour les grades en qualité A516.
- Toutes options spécifiques au client relatives à la norme EN 10028-2 ou ATSM516/A516M.

Si le client ne donne aucune indication quant à l'exécution de l'une de ces options issues de la norme EN 10028-2 & ASTM A516/A516M, MAGHREB STEEL livre ses produits selon les spécifications de base.

Acier pour appareils à pression HRC TÔLE QUARTO

ACIERS POUR APPAREILS À PRESSION

COMPOSITION CHIMIQUE / EN 10028-2

Grades	Tolér ance		%Si	%Mn	%Р	%S	%AI	%N	%Cr	%Cu	%Mo	%Nb	%Ni	%Ti	%V	Cr+Cu+M o+Ni
P235GH	min	-	-	0.6	-	-	0.02	-	-	-	-	-	-	-	-	-
PZSSGN	max	0.16	0.35	1.2	0.025	0.01	-	0.012	0.3	0.3	0.08	0.02	0.3	0.03	0.02	0.7
P265GH	min	-	-	-	-	-	0.02	-	-	-	-	-	-	-	-	-
PZOSGH	max	0.2	0.4	1.4	0.025	0.01	-	0.012	0.3	0.3	0.08	0.02	0.3	0.03	0.02	0.7
P295GH	min	0.08	-	0.9	-	-	0.02	-	-	-	-	-	-	-	-	-
PZ93GH	max	0.2	0.4	1.5	0.025	0.01	-	0.012	0.3	0.3	0.08	0.02	0.3	0.03	0.02	0.7
DSECH	min	0.1	-	1.1	-	-	0.02	-	-	-	-	-	-	-	-	-
P355GH	max	0.22	0.6	1.7	0.025	0.01	-	0.012	0.3	0.3	0.08	0.02	0.3	0.03	0.02	0.7

COMPOSITION CHIMIQUE / ASTM A516/A516M

Grades	Tolérance	Epaisseur	%C	%Si	%Mn	%Р	%S
	min	-	-	0.15	0.6	-	-
	max	12.5	0.18	0.4	0.9	0.035	0.035
A516Gr55	min	12.51	-	0.15	0.6	-	-
ASTOCISS	max	50	0.20	0.4	1.2	0.035	0.035
	min	51	-	0.15	0.6	-	-
	max	100	0.22	0.4	1.2	0.035	0.035
	min	-	-	0.15	0.6	-	-
	max	12.5	0.21	0.4	0.9	0.035	0.035
A516Gr60	min	12.51	-	0.15	0.85	-	-
A3100100	max	50	0.23	0.4	1.20	0.035	0.035
	min	51	-	0.15	0.85	-	-
	max	100	0.25	0.4	1.20	0.035	0.035
	min	-	-	0.15	0.85	-	-
	max	12.5	0.24	0.4	1.2	0.035	0.035
A516Gr65	min	12.51	-	0.15	0.85	-	-
ASIOGIOS	max	50	0.26	0.4	1.2	0.035	0.035
	min	51	-	0.15	0.85	-	-
	max	100	0.28	0.4	1.2	0.035	0.035
	min	-	-	0.15	0.85	-	-
	max	12.5	0.27	0.4	1.2	0.035	0.035
A516Gr70	min	12.51	-	0.15	0.85	-	-
A3100170	max	50	0.28	0.4	1.2	0.035	0.035
	min	51	-	0.15	0.85	-	-
	max	100	0.30	0.4	1.2	0.035	0.035

Acier pour appareils à pression HRC TÔLE QUARTO

CARACTÉRISTIQUES MÉCANIQUES / EN 10028-2

Grades	Tolérance	Epaisseur	Rp	Rm	A%		KJ	
	min	-	235	360	24	27	34	40
	max	16	-	480	-	-	-	-
	min	16.1	225	360	24	27	34	40
DAAFCH	max	40	-	480	-	-	-	-
P235GH	min	40.1	215	360	24	27	34	40
	max	60	-	480	-	-	-	-
	min	60.1	200		24	27	34	40
	max	100	-		-	-	-	-
	min	-	265	410	22	27	34	40
	max	16	-	530	-	-	-	-
	min	16.1	255	410	22	27	34	40
DACECH	max	40	-	530	-	-	-	-
P265GH	min	40.1	245	410	22	27	34	40
	max	60	-	530	-	-	-	-
	min	60.1	215	410	22	27	34	40
	max	100	-	530	-	-	-	-
	min	-	295	460	21	27	34	40
	max	16	-	580	-	-	-	-
	min	16.1	290	460	21	27	34	40
P295GH	max	40	-	580	-	-	-	-
PZ95GN	min	40.1	285	460	21	27	34	40
	max	60	-	580	-	-	-	-
	min	60.1	260	460	21	27	34	40
	max	100	-	580	-	-	-	-
	min	-	355	510	20	27	34	40
	max	16	-	650	-	-	-	-
	min	16.1	345	510	20	27	34	40
P355GH	max	40	-	650	-	-	-	-
гэээип	min	40.1	315	510	20	27	34	40
	max	60	-	650	-	-	-	-
	min	60.1	295	490	20	27	34	40
	max	100	-	630	-	-	-	-

CARACTÉRISTIQUES MÉCANIQUES / ASTM A516/A516M

Grades	Tolérance	Rp	Rm	А	%
A516Gr55	min	205	380	23	27
ASTOCISS	max	-	515	-	-
A516Gr60	min	220	415	21	25
ASTOCIOU	max	-	550	-	
A516Gr65	min	240	450	19	23
ASIOGIOS	max	-	585	-	
ΛΕ16Cr70	min	260	485	17	21
A516Gr70	max	-	620	-	-

Acier pour appareils à pression TÔLE QUARTO

CARTOGRAPHIE DIENSIONNELLE

	P	235GH	+AR/+	-N		P.	265GH	+AR/+	·N		P	295 GH	+AR/+	·N		P	355 GH	+AR/+	N
		Larg	geur				Larg	geur				Larg	geur				Larg	geur	
		1500	2000	2500			1500	2000	2500			1500	2000	2500			1500	2000	2500
	5					5					5					5			
	6					6					6					6			
	8					8					8					8			
	10					10					10					10			
	15					15					15					15			
	20					20					20					20			
	25					25					25					25			
_	<i>30</i>				<u>_</u>	<i>30</i>				<u>_</u>	<i>30</i>				<u>_</u>	<i>30</i>			
ser	35				ser	<i>35</i>				ser	<i>35</i>				ser	35			
Epaisseur	40				Epaisseur	40				Epaisseur	40				Epaisseur	40			
Ш	45				Ш	45				Ш	45				Ш	45			
	<i>50</i>					50					50					<i>50</i>			
	<i>55</i>					<i>55</i>					<i>55</i>					<i>55</i>			
	60					60					60					60			
	65					<i>65</i>					<i>65</i>					65			
	70					70					70					70			
	<i>75</i>					<i>75</i>					<i>75</i>					<i>75</i>			
	80					80					80					80			

	A5:	16 Gr5	5 +AR/	/+N		A51	6 Gr6) +Al	R/+N		A51	.6 Gr6	5 +AR	?/+N		A51	16 Gr70) +AR,	/+N
		Larg	geur				Lar	geur				Larg	geur				Larg	geur	
		1500	2000	2500			1500	2000	2500			1500	2000	2500			1500	2000	2500
	5					5					5					5			
	6					6					6					6			
	8					8					8					8			
	10					10					10					10			
	15					15					15					15			
	20					20					20					20			
	25					25					25					25			
=	30				ır	30				Ξ.	30				٦Ľ	30			
seı	35				sseı	<i>35</i>					35				sseı	35			
Epaisseur	40				Epaisseur	40				paisseur	40				Epaisseur	40			
ш	45				Е	45				Ш	45				Е	45			
	50					50					50					50			
	55					55					55					55			
	60					60					60					60			
	65					65					65					65			
	70					70					70					70			
	75					<i>75</i>					<i>75</i>					<i>75</i>			
	80					<i>80</i>					80					80			

ACIER A HAUTE LIMITE D'ELASTICITE

OBTENUS PAR LAMINAGE THERMOMÉCANIQUE HRC

ACIER A HAUTE LIMITE D'ELASTICITE

Les aciers à haute limite élastique sont des aciers laminés à chaud, à haute résistance et à basse teneur en alliage. Cette gamme d'acier se caractérisent par leurs excellentes résistances, résiliences, tenues à la fatigue avec une bonne aptitude à la mise en forme et la soudabilité.

APPLICATIONS

Ces qualités d'acier sont largement utilisées pour des applications où un poids léger et une haute résistance sont des facteurs essentiels. Ces applications incluent les composants de sièges automobiles, les composants de camions et de remorques, les crochets de remorquage, les silos industriels, ainsi que les machines agricoles, de levage et de terrassement

CONDITIONS DE LIVRAISON

- Grades:
 - Selon EN 10149-2
- État de livraison :

«MC» Produits livrés à l'état de laminage thermomécanique

• Les produits peuvent être livrés type 3.1. 2.2 . 2.2cc ou conformément à la norme EN 10204

OPTIONS

Les informations suivantes doivent être spécifiées au moment de la commande :

- Quantité à livrer.
- Désignation du produit. dimensions nominales. normes de référence (conditions techniques de livraison et tolérances sur les dimensions et la forme) et/ou toute autre exigence spécifique du client.
- Type de certificat de contrôle
- Toute exigence additionnelle en matière de contrôles, d'essais et de documents de contrôle.
- Toutes options spécifiques au client relatives à la norme EN 10149-2/ EN 10149-1
- Si le client ne donne aucune indication quant à l'exécution de l'une de ces options issues de la norme EN 10149-2. MAGHREB STEEL livre ses produits selon les spécifications de base.

ACIER A HAUTE LIMITE D'ELASTICITE

OBTENUS PAR LAMINAGE THERMOMÉCANIQUE HRC

Composition chimique EN 10149-2

Cuada						%max					
Grade	С	Mn	Si	Р	S	Al	Nb	V	Ti	Мо	В
S315MC	0,12	1,30	0,50	0,025	0,020	0,015	0,090	0,20	0,15		
S355MC	0,12	1,50	0,50	0,025	0,020	0,015	0,090	0,20	0,15		
S420MC	0,12	1,60	0,50	0,025	0,015	0,015	0,090	0,20	0,15		
S460MC	0,12	1,60	0,50	0,025	0,015	0,015	0,090	0,20	0,15		
S500MC	0,12	1,70	0,50	0,025	0,015	0,015	0,090	0,20	0,15		
S550MC	0,12	1,80	0,50	0,025	0,015	0,015	0,090	0,20	0,15		
S600MC	0,12	1,90	0,50	0,025	0,015	0,015	0,090	0,20	0,22	0,50	0,005
S650MC	0,12	2,00	0,60	0,025	0,015	0,015	0,090	0,20	0,22	0,50	0,005
S700MC	0,12	2,10	0,60	0,025	0,015	0,015	0,090	0,20	0,22	0,50	0,005
S900MC	0,20	2,20	0,60	0,025	0,010	0,015	0,090	0,20	0,25	1,00	0,005
S960MC	0,20	2,20	0,60	0,025	0,010	0,015	0,090	0,20	0,25	1,00	0,005

CARACTÉRISTIQUES MÉCANIQUES/ EN 10149-2

		-		-	-
Nuance	Epaisseur (mm)	Re (Mpa)	Rm (Mpa)	A80 (%)	A5,65√S0 (%)
	< 3			≥ 20	-
S315MC	≥ 3	≥ 315	390 - 510	-	≥ 24
	< 3			≥ 19	-
S355MC	≥3	≥ 355	430 - 550	-	≥ 23
	< 3			≥ 16	-
S420MC	≥ 3	≥ 420	480 - 620	-	≥ 19
	< 3			≥ 14	
S460MC	≥ 3	≥ 460	520 - 670	-	≥ 17
0500140	< 3			≥ 12	-
S500MC	≥ 3	≥ 500	550 - 700	-	≥ 14
CEEONAC	< 3	. 550	600 760	≥ 12	
S550MC	≥ 3	≥ 550	600 - 760	-	≥ 14
CCOOMC	< 3	> 600	650 830	≥ 11	
S600MC	≥ 3	≥ 600	650 - 820	-	≥ 13
	< 3	≥ 650		≥ 10	
S650MC	≥ 3	≥ 030	700 - 880	-	≥ 12
	> 8	≥ 630		-	2 12
	< 3	≥ 700		≥ 10	
S700MC	≥ 3	≥ 700	750 - 950	-	≥ 12
	> 8	≥ 680		-	_ 12
S900MC	< 3	≥ 900	930 - 1200	≥ 7	
3333	≥ 3	_ 300	330 1203	-	≥ 8
S960MC	< 3	≥ 960	980 - 1250	≥ 6	
	> 2			_	> 7

Direction: L

ACIER A HAUTE LIMITE D'ELASTICITE

OBTENUS PAR LAMINAGE THERMOMÉCANIQUE

HRC

Cartographie dimensionnelle

														Ера	isse	eurs	5												
	Largeurs	1.5	1.6	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5			T		9.5	10	11	12	13	14	15	16	17	18	19	20
	1000																												
S315MC	1250																												
	1500																												
	1000																												
S355MC	1250																												
	1500																												
	1000																												
S420MC	1250																												
	1500																												
	1000																												
S460MC	1250																												
	1500																												
	1000																												
S500MC	1250																												
	1500																												
	1000																												
S550MC	1250																												
	1500																												
CC00N4C	1000																												
S600MC	1250																												
	1500																												
S650MC	1000 1250																												
SOSUIVIC	1500																												
	1000																												
S700MC	1250																												
3700IVIC	1500																												
	1000																												
S900MC	1250																												
SSOSIVIC	1500																												
	1000																												
S960MC	1250																												
33001110	1500																												

A VALIDER A LA COMMANDE

Aciers de construction soudables à grains fins obtenus par laminage normalisant

TÔLE QUARTO

ACIER DE CONSTRUCTION

Les aciers de construction à grains fins se caractérisent par une résilience plus élevée qui leur confère de meilleures propriétés de mise en œuvre. Cette gamme d'aciers sont le résultat d'un traitement thermique appelé « normalisation » qui permet d'obtenir une microstructure régulière et fine ferrite-perlite dans l'acier.

Ces qualités d'acier sont destinées en particulier à l'emploi dans les éléments hautement sollicités des constructions soudées telles que ponts, vannes de décharge, réservoirs de stockage, réservoirs d'approvisionnement en eau, etc., pour service à température ambiante et à basses températures.

CONDITIONS DE LIVRAISON

- · Grades:
 - Selon EN 10025-3
- État de livraison : N NL
- Les produits peuvent être livrés type 3.1. 2.2. 2.2cc ou conformément à la norme EN 10204

OPTIONS

Les informations suivantes doivent être spécifiées au moment de la commande :

- Quantité à livrer.
- Désignation du produit. dimensions nominales. normes de référence (conditions techniques de livraison et tolérances sur les dimensions et la forme) et/ou toute autre exigence spécifique du client.
- Type de certificat de contrôle
- Toute exigence additionnelle en matière de contrôles. d'essais et de documents de contrôle.
- Délivrance d'un marquage CE. marquage NM
- Toutes options spécifiques au client relatives aux normes EN 10025-3
- Si le client ne donne aucune indication quant à l'exécution de l'une de ces options issues de la norme EN 10025-3. MAGHREB STEEL livre ses produits selon les spécifications de base.

Aciers de construction soudables à grains fins obtenus par laminage normalisant

TÔLE QUARTO

Composition chimique EN 10025-3

CDADE	YAT EUD							%n	nax						
GRADE	VALEUR	C	Mn	Si	P	S	Al t	N	Nb	Ti	V	Cr	Cu	Mo	Ni
COZENI	min	-	0,45	-	-	-	0,015	-	-	-	-	-	-	-	-
S275N	max	0,20	1,6	0,45	0,035	0,030	-	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017
S275NL	min	-	0,45	-	-	-	0,015		-	-	-	-	-	-	-
32/5INL	max	0,18	1,6	0,45	0,030	0,025	0,015	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017
S355N	min	-	0,85	-	-	-	-	-	-	-	-	-	-	-	-
3533IN	max	0,22	1,75	0,55	0,035	0,030	0,015	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017
S355NL	min	-	0,85	-	-	-	0,015	-	-	-	-	-	-	-	-
3535INL	max	0,20	1,75	0,55	0,030	0,025	-	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017
S420N	min	-	0,95	-	-	-	0,015		-	-	-	-	-	-	-
342UN	max	0,22	1,8	0,65	0,035	0,030	0,015	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017
S420NL	min	-	0,95	-	-	-	-	-	-	-	-	-	-	-	-
3420INL	max	0,22	1,8	0,65	0,030	0,025	0,015	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017
CACON	min	-	0,95	-			0,015	-	-	-	-	-	-	-	-
S460N	max	0,22	1,8	0,65	0,035	0,030	-	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017
S460NL	min	-	0,95	-	-	-	0,015	-	-	-	-	-	-	-	-
340UNL	max	0,22	1,8	0,65	0,030	0,025	-	0,017	0,06	0,06	0,06	0,35	0,6	0,13	0,017

CARACTÉRISTIQUES MÉCANIQUES EN 10025-3

			R	p			R	m				А	%		
GRADE	Valeur	<=16	16 <ep< =40</ep< 	40 <ep< =50</ep< 	40 <ep< =63</ep< 	ep<3	3<=ep< =40	40<=ep <=50	50 <ep< =63</ep< 	1.5 <ep< =2</ep< 	2 <ep<= 2.5</ep<= 	2.5 <ep< 3</ep< 	3<=ep< =16	16 <ep< =40</ep< 	40 <ep< =63</ep<
S275N	min	275	265	-	255	370	370	370	370	24	24	24	24	24	24
32/3N	max	-	-	-	-	510	510	510	510	-	-	-	-	-	-
S275NL	min	275	265	-	255	370	370	370	370	24	24	24	24	24	24
32/3NL	max	-	-	-	-	510	510	510	510	-	-	-	-	-	-
S355N	min	355	345	-	335	470	470	470	470	22	22	22	22	22	22
222211	max	-	-	-	-	630	630	630	630	-	-	-	-	-	-
S355NL	min	355	345	-	335	470	470	470	470	22	22	22	22	22	22
SSSSINL	max	-	-	-	-	630	630	630	630	-	-	-	-	-	-
S420N	min	420	400	-	390	520	520	520	520	19	19	19	19	19	19
342UN	max	-	-	-	-	680	680	680	680	-	-	-	-	-	-
S420NL	min	420	400	-	390	520	520	520	520	19	19	19	19	19	19
3420INL	max	-	-	-	-	680	680	680	680	-	-	-	-	-	-
S460N	min	460	440	-	430	540	540	540	540	17	17	17	17	17	17
3400N	max	-	-	-	-	720	720	720	720	-	-	-	-	-	-
S460NL	min	460	440	-	430	540	540	540	540	17	17	17	17	17	17
3400INL	max	-	-	-	-	720	720	720	720	-	-	-	-	-	-

www.maghrebsteel.ma

Aciers de construction soudables à grains fins obtenus par laminage normalisant

TÔLE QUARTO

Composition chimique EN 10025-3

	Largoure								ĺ	Epais	seur	S							
	Largeurs	5	6	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
	1500																		
S275N	2000																		
	2500																		
	1500																		
S275NL	2000																		
	2500																		
	1500																		
S355N	2000																		
	2500																		
	1500																		
S355NL	2000																		
	2500																		
	1500																		
S420N	2000																		
	2500																		
	1500																		
S420NL	2000																		
	2500																		
	1500																		
S460N	2000																		
	2500																		
	1500																		
S460NL	2000																		
	2500																		

A VALIDER A LA COMMANDE

Aciers de construction soudables à grains fins obtenus par laminage normalisant

HRC

Composition chimique EN 10025-3

														Ера	isse	eurs												
	Largeurs	1.5	1.6	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5				9.5	10	11	12	13	14	15	16	17	18	19	20
	1000																											
S275N	1250																											
	1500																											
	1000																											
S275NL	1250																											
	1500																											
	1000																											
S355N	1250																											
	1500																											
	1000																											
S355NL	1250																											
	1500																											
	1000																											
S420N	1250																											
	1500																											
	1000																											
S420NL	1250																											
	1500																											
	1000																											
S460N	1250																											
	1500																											
	1000																											
S460NL	1250																											
	1500																											

A VALIDER A LA COMMANDE

à résistance améliorée à la corrosion atmosphérique

HRC - QUARTO

ACIER A RRESISTANCE AMELIOREE A LA CORROSION

L'acier patinable est connu sous le nom d'acier résistant à la corrosion atmosphérique. Il est composé d'acier à faible teneur en carbone et d'éléments d'alliage qui augmentent sa résistance et sa durabilité pour maintenir sa structure en cas d'intempéries.

Cet acier est utilisé pour ses propriétés protectrices contre la rouille (aucune peinture ni traitement

extérieur n'est nécessaire à l'avenir).

APPLICATIONS

Ces qualités d'acier sont largement utilisées dans des environnements corrosifs à haute température tels que de hautes cheminées, les plaques d'échangeur de chaleur...

En raison de la haute résistance et des propriétés portantes du CORTEN, il est largement utilisé dans les applications structurelles telles que les bâtiments et les ponts. En outre, il est utilisé dans la majorité des formes structurelles laminées pour les applications de construction.

- Grades:
 - Selon EN 10025-5
- État de livraison :

«AR» Produits livrés à l'état brute de laminage

«N» Produits livrés en laminage normalisant

Les produits peuvent être livrés type 3.1. 2.2 . 2.2cc ou conformément à la norme EN 10204

OPTIONS

Les informations suivantes doivent être spécifiées au moment de la commande :

- Quantité à livrer.
- Désignation du produit. dimensions nominales. normes de référence (conditions techniques de livraison et tolérances sur les dimensions et la forme) et/ou toute autre exigence spécifique du client.
- Type de certificat de contrôle
- Toute exigence additionnelle en matière de contrôles, d'essais et de documents de contrôle.
- Toutes options spécifiques au client relatives à la norme EN 10025-5/ EN 10025-1

Si le client ne donne aucune indication quant à l'exécution de l'une de ces options issues de la norme EN 10025-5. MAGHREB STEEL livre ses produits selon les spécifications de base.

à résistance améliorée à la corrosion atmosphérique

HRC - QUARTO

Couche de patine

Corrosion naturelle

L'acier Corten, développe une patine distinctive qui change de couleur au fil du temps. Cette patine, formée par la corrosion naturelle, joue un rôle crucial dans la protection de l'acier contre la corrosion future tout en modifiant son apparence esthétique.

L'acier développe une patine esthétique qui passe de l'orange clair au brun foncé, tout en assurant une protection efficace contre la corrosion.

Accélérateur de Rouille

Pour accélérer le processus de formation de patine et obtenir rapidement l'aspect final de la patine, des accélérateurs de rouille peuvent être utilisés. Ces produits chimiques favorisent la formation prématurée de la rouille, imitant le vieillissement naturel de l'acier Corten.

Préparation de la surface:

Avant l'application de l'accélérateur de rouille, il est crucial de préparer correctement la surface de l'acier Corten pour garantir une adhésion optimale et des résultats uniformes. Voici les étapes recommandées pour la préparation de la surface :

- Nettoyer le métal s'il est peint ou a des substances et éliminer la CALAMINE de l'acier COR-TEN complètement.
- Étaler le produit à l'aide d'un rouleau que vous tremperez dans l'accélérateur.

La couche d'accélérateur doit recouvrir de manière uniforme la surface, et non pas sous forme de gouttes. Si ce n'est pas le cas, la surface est mal dégraissée ou vous n'avez pas assez insisté avec le rouleau.

Pendant 30 minutes, la surface commence à devenir sèche, c'est l'oxydation qui commence.

 Au bout de 45minutes, remettre une deuxième couche de l'acclélérateur

Le résultat prendra deux jours pour voir une stabilisation de la finition oxydée, si en veut plus d'oxydation nous pouvons appliquer une nouvelle couche de produit bien que seulement avec le temps nous verrons une évolution de l'oxydation.

www.maghrebsteel.ma

à résistance améliorée à la corrosion atmosphérique

HRC - QUARTO

Composition chimique EN 10025-5

CDADE	VALEUD			С	OMPOSITIO	N CHIMIQUE	SUR COULE	Ε		
GRADE	VALEUR	C %	Mn %	Si %	P %	S %	Al t %	N%	Cr%	Cu %
COOFIONA	min	-	0.2	-	-	-	0.02	0.009	-	-
S235J0W	max	0.13	0.6	0.4	0.035	0.035	-	-	-	-
S235J2W	min	-	0.2	-	-	-	0.02	0.009	0.4	0.25
3233JZ VV	max	0.13	0.6	0.4	0.035	0.03	-	-	0.8	0.55
COEFIONAD	min	-	-	-	0.06	-	0.02	0.009	0.30	0.25
S355J0WP	max	0.12	1	0.75	0.15	0.035	-	-	1.25	0.55
COEFIONAD	min	-	-	-	0.06	-	0.02	-	0.3	0.25
S355J2WP	max	0.12	1	0.75	0.15	0.03		0.009	1.25	0.55
COEFIONA	min	-	0.5	-	-	-	0.02	0.009	0.4	0.25
S355J0W	max	0.16	1.5	0.5	0.035	0.035	-	-	0.8	0.55
COEFIONA	min	-	0.50	-	-	-	0.02	0.009	0.4	0.25
S355J2W	max	0.16	1.5	0.5	0.03	0.03	-	_	0.8	0.55
COEEKOVA	min	-	0.5	-	_	-	0.02	0.009	0.4	0.25
S355K2W	max	0.16	1.5	0.5	0.03	0.03	-	-	0.8	0.55

CARACTÉRISTIQUES MÉCANIQUES/ EN 10025-5

			Rp			Ri	m				А	%		
GRADE	Valeur	<=16	16 <ep<= 40</ep<= 	40 <ep<= 63</ep<= 	ep<3	3<=ep<= 40	40<=ep< =50	50 <ep<= 63</ep<= 	1.5 <ep< =2</ep< 	2 <ep<=2 .5</ep<=2 	2.5 <ep<< th=""><th>3<=ep<= 16</th><th>16<ep<= 40</ep<= </th><th>40<ep<= 63</ep<= </th></ep<<>	3<=ep<= 16	16 <ep<= 40</ep<= 	40 <ep<= 63</ep<=
S235J0W	min	235	225	215	360	360	360	360	17	18	19	24	24	23
32331044	max	_	-	-	510	510	510	510	_	_	-	_	_	_
C22E12\\\/	min	235	225	215	360	360	360	360	17	18	19	24	24	23
S235J2W	max	-	-	-	510	510	510	510	_	_	-	_	_	-
COEFIONAD	min	355	345	-	510	470	470	470	14	15	16	20	20	-
S355J0WP	max	-	-	-	680	630	630	630	_	_	-	-	_	-
COEFIONAD	min	355	345	-	510	470	470	470	14	15	16	20	20	-
S355J2WP	max	-	-	-	680	630	630	630	-	-	-	-	-	-
CALLIONY	min	355	345	335	510	470	470	470	14	15	16	20	20	-
S355J0W	max	-	-	-	680	630	630	630	_	_	-	_	_	-
COEFIONA	min	355	345	335	510	470	470	470	14	15	16	20	20	-
S355J2W	max	_	-	-	680	630	630	630	_	_	-	_	_	-
COLLKOW	min	355	345	335	510	470	470	470	14	15	16	20	20	-
S355K2W	max	-	-	-	680	630	630	630	-	-	-	-	-	-

à résistance améliorée à la corrosion atmosphérique QUARTO

Cartographie dimensionnelle

EN 10025-5	Largours								[Epais	seur	5							
	Largeurs	5	6	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
	1500																		
\$235W J0/J2 + AR	2000																		
	2500																		
S355W	1500																		
J0/J2/K2	2000																		
+ AR	2500																		
S355WP	1500																		
J0/J2	2000																		
J0/J2 + AR	2500																		
	1500																		
\$235W J0/J2 + N	2000																		
	2500																		
S355W	1500																		
S355W J0/J2/K2	2000																		
+ N	2500																		
S355WP	1500																		
J0/J2	2000																		
+ N	2500																		

A VALIDER A LA COMMANDE

à résistance améliorée à la corrosion atmosphérique

HRC

Composition chimique EN 10025-3

	Largeurs														Ера	isse	eurs	6												
	Largeurs	1.5	1.6	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	11	12	13	14	15	16	17	18	19	20
S235W	1000																													
J0/J2 +	1250																													
AR	1500																													
S355W	1000																													
J0/J2/K2 + AR	1250																													
·AR	1500																													
S355WP	1000																													
J0/J2 + AR	1250																													
· AII	1500																													

A VALIDER A LA COMMANDE

Acier pour bouteilles à gaz soudées BOBINE - FEUILLARD - TÔLE

ACIERS POUR BOUTEILLES À GAZ SOUDÉES

Les aciers pour bouteilles à gaz soudées sont caractérisés par la constance de leur niveau de résistance. même après traitement thermique. ce qui garantit leur sûreté. Ces qualités présentent une bonne aptitude au soudage et des valeurs de résilience et de résistance élevées. Ils sont aptes à l'emboutissage profond et non vieillissants.

APPLICATIONS

Ces aciers sont utilisés pour la fabrication de bouteilles à gaz selon le procédé suivant : emboutissage à froid du fond et du col de la bouteille. soudage sous flux. traitement thermique de normalisation.

CONDITIONS DE LIVRAISON

- Grades: P245NB. P265NB. P310NB. P355NB selon EN 10120.
- État de livraison : «+AR» sans conditions particulières de laminage et/ou de traitement thermique.
- État de Surface : laminée à chaud (tôle noire) ou décapée.
- Les produits peuvent être livrés type 3.1. 2.2 . 2.2cc ou conformément à la norme EN 10204

OPTIONS

Les informations suivantes doivent être spécifiées au moment de la commande :

- Quantité à livrer.
- Désignation du produit. dimensions nominales. normes de référence (conditions techniques de livraison et tolérances sur les dimensions et la forme) et/ou toute exigence spécifique du client.
- Toute exigence additionnelle en matière de contrôles. d'essais et de documents de contrôle.
- Toutes options spécifiques au client relatives à la norme EN 10120.
- Si le client ne donne aucune indication quant à l'exécution de l'une de ces options issues de la norme

EN 10120. MAGHREB STEEL livre ses produits selon les spécifications de base.

Acier pour bouteilles à gaz soudées BOBINE - FEUILLARD - TÔLE

ACIERS POUR BOUTEILLES À GAZ SOUDÉES

COMPOSITION CHIMIQUE/ EN 10120

	≤ C (%)	≤ Si (%)	≥ Mn (%)	≤ P (%)	≤ S (%)	≥ AI _{tot} (%)	≤ Nb (%)	≤ Nb (%)
P245NB	0.16	0.25	0.30	0.025	0.015	0.020	0.050	0.030
P265NB	0.19	0.25	0.40	0.025	0.015	0.020	0.050	0.030
P310NB	0.20	0.25	0.70	0.025	0.015	0.020	0.050	0.030
P355NB	0.20	0.25	0.70	0.025	0.015	0.020	0.050	0.030

CARACTÉRISTIQUES MÉCANIQUES / EN 10120

	Épaisseur (mm)	Rp (Mpa)	R _m (Mpa)	Α ((%)
P245NB	1.50 - 2.99	≥ 245	360 - 450	≥ 26	-
FZ43ND	3.00 - 4.50	≥ 243	300 - 430	-	≥ 34
P265NB	1.50 - 2.99	≥ 265	410 - 500	≥ 24	-
F ZOJNB	3.00 - 4.50	2 200	410 - 300	-	≥ 32
P310NB	1.50 - 2.99	≥ 310	460 - 550	≥ 21	-
POTUND	3.00 - 4.50	2310	400 - 550	-	≥ 28
P355NB	1.50 - 2.99	≥ 310	510 - 620	≥ 19	-
POSSIND	3.00 - 4.50	≥ 310	310 - 620	-	≥ 24

GRADES ÉQUIVALENTS

	NF A 36-211 : 1990	JIS G3116	Anciens noms de marques
P245NB	BS1 *	SG 255 *	BZ 37 *
P265NB	BS2 *	SG 295 *	BZ 42 *
P310NB	BS3 *	SG 325 *	-
P355NB	BS4 *	SG 365 *	-

^{*} À valider à la commande

Acier pour bouteilles à gaz soudées

BOBINE - FEUILLARD - TÔLE

CARTOGRAPHIE DIENSIONNELLE

		P24	5NB				P26	5NB				P31	0NB				P35	5NB	
		Larg	geur				Lar	geur				Larg	geur				Larg	geur	
		1000	1150	1500					1500				1150	1500				1150	1500
	1.5					1.5					1.5					1.5			
	1.6					1.6					1.6					1.6			
	1.7					1.7					1.7					1.7			
	1.8					1.8					1.8					1.8			
	1.9					1.9					1.9					1.9			
	2					2					2					2			
	2.1					2.1					2.1					2.1			
	2.2					2.2					2.2					2.2			
	2.3					2.3					2.3					2.3			
	2.4					2.4					2.4					2.4			
	2.5					2.5					2.5					2.5			
	2.6					2.6					2.6					2.6			
	2.7					2.7					2.7					2.7			
	2.8					2.8					2.8					2.8			
_	2.9				=	2.9				=	2.9				=	2.9			
Epaisseur	3				Epaisseur	3				Epaisseur	3				Epaisseur	3			
pais	3.1				pai	3.1				pais	3.1				pai	3.1			
ш	3.2				ш	3.2				Ш	3.2				ш	3.2			
	3.3					3.3					3.3					3.3			
	3.35					3.35					3.35					3.35			
	3.4					3.4					3.4					3.4			
	3.5					3.5					3.5					3.5			
	3.6					3.6					3.6					3.6			
	3.7					3.7					3.7					3.7			
	3.8					3.8					3.8					3.8			
	3.9					3.9					3.9					3.9			
	3.95					3.95					3.95					3.95			
	4					4					4					4			
	4.5					4.5					4.5					4.5			
	5					5					5					5			
	5.5					5.5					5.5					5.5			
	6					6					6					6			

A VALIUER 0 LA COMMANDE

Acier de construction / pour découpe Laser TÔLE QUARTO

ACIER POUR DECOUPE LASER

Les aciers pour découpe LASER sont des aciers laminées à chaud produits dans des qualités spécifiques. développées pour des applications recourant à un équipement de découpe thermique et mécanique (laser. plasma. etc.)

APPLICATIONS

Ces aciers conviennent particulièrement à la production de pièces complexes ou à l'amélioration de la productivité quand les pièces sont produites à une petite échelle.

CONDITIONS DE LIVRAISON

- Grade S235JR/J0/J2- S275J2/J0/J2 S355J2/J0/J2 « LZ »
- État de livraison : «+AR» sans conditions particulières de laminage et/ou de traitement thermique.

OPTIONS

Les informations suivantes doivent être spécifiées au moment de la commande :

- Quantité à livrer.
- Désignation du produit. dimensions nominales. normes de référence (conditions techniques de livraison et tolérances sur les dimensions et la forme) et/ou toute autre exigence spécifique du client.
- Type de certificat de contrôle
- Toute exigence additionnelle en matière de contrôles. d'essais et de documents de contrôle.
- Besoin de test de flexion par choc « Charpy » pour les grades en qualité JR.
- Délivrance d'un marquage CE. marquage NM
- Toutes options spécifiques au client relatives à la norme EN 10025-2.

Si le client ne donne aucune indication quant à l'exécution de l'une de ces options issues de la norme EN 10025-2. MAGHREB STEEL livre ses produits selon les spécifications de base.

Acier de construction / pour découpe Laser TÔLE QUARTO

ACIER POUR DECOUPE LASER

COMPOSITION CHIMIQUE / EN 10025-2

Cuada					%max				
Grade		С		Si	Mn	Р	S	N	Cu
	<16	16 <ep<40< th=""><th>>40</th><th>31</th><th>IVIII</th><th></th><th>3</th><th>IN</th><th>Cu</th></ep<40<>	>40	31	IVIII		3	IN	Cu
	0.17	0.17	0.20	-	1.4	0.035	0.035	0.012	0.55
S235JR	0.17	0.17	0.17	-	1.4	0.030	0.030	0.012	0.55
	0.17	0.17	0.17	-	1.4	0.025	0.025	-	0.55
	0.21	0.21	0.22	-	1.5	0.035	0.035	0.012	0.55
S275JR	0.18	0.18	0.18	-	1.5	0.030	0.030	0.012	0.55
	0.18	0.18	0.18	-	1.5	0.025	0.025	-	0.55
	0.24	0.24	0.24	0.55	1.6	0.035	0.035	0.012	0.55
S355JR	0.20	0.20	0.22	0.55	1.6	0.030	0.030	0.012	0.55
	0.20	0.20	0.22	0.55	1.6	0.025	0.025	-	0.55

CARACTÉRISTIQUES MÉCANIQUES / EN 10025-2

	Limit	e d'élas	ticité m	inimale	Résista	nce à la								
			Rp		tractio	on Rm		A	\80% mi	n		A5	5.65% m	in
Cuada		(N/	/mm²)		(N/n	nm²)								
Grade		16	40	63		2 / 0		1	1.5	2	2.5	3	40	63
	≤16	<e≤< td=""><td><e td="" ≤<=""><td><e td="" ≤<=""><td><3</td><td>3 ≤ e ≤100</td><td>≤1</td><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e></td></e></td></e≤<>	<e td="" ≤<=""><td><e td="" ≤<=""><td><3</td><td>3 ≤ e ≤100</td><td>≤1</td><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e></td></e>	<e td="" ≤<=""><td><3</td><td>3 ≤ e ≤100</td><td>≤1</td><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e>	<3	3 ≤ e ≤100	≤1	<e≤< td=""><td><e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<>	<e≤< td=""><td><e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<></td></e≤<>	<e≤< td=""><td><e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<></td></e≤<>	<e≤< td=""><td>≤e≤</td><td><e≤< td=""><td><e≤< td=""></e≤<></td></e≤<></td></e≤<>	≤e≤	<e≤< td=""><td><e≤< td=""></e≤<></td></e≤<>	<e≤< td=""></e≤<>
		40	63	80		7100		1.5	2	2.5	3	40	63	100
S235JR					200	200								
S235J0	235	225	215	215	360 -	360 -	15	16	17	18	19	24	23	22
S235J2					510	510								
S275JR				245	420	410								
S275J0	275	265	255	245	430 - 580	410 - 560	13	14	15	16	17	21	20	19
S275J2					360	300								
S355JR				225	F10	470								
S355J0	355	345	335	325	510 - 680	470 - 630	12	13	14	15	16	20	19	18
S355J2					080	030								

CARTOGRAPHIE DIENSIONNELLE

	Largoure	Epaisseurs																	
Spécial Client	Largeurs	5	6	8	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
S235 JR/J0/J2 + AR	1500																		
	2000																		
	2500																		
S275 JR/J0/J2 + AR	1500																		
	2000																		
	2500																		
S355 JR/J0/J2 + AR	1500																		
	2000																		
	2500																		